Cholinergic stimulation induces asynchrony between the circular and longitudinal muscle contraction during esophageal peristalsis.
نویسندگان
چکیده
In healthy subjects, a close temporal correlation exists between contractions of the circular muscle (CM) and longitudinal muscle (LM) layers of the esophagus. Patients with nutcracker esophagus show disassociation between the peak of contractions of the CM and LM layers and the peak of contraction 1-3 s apart (Jung HY, Puckett JL, Bhalla V, Rojas-Feria M, Bhargava V, Liu J, Mittal RK. Gastroenterology 128: 1179-1186, 2005). The purpose of the present study was to evaluate the effect of acetylcholinesterase inhibitor (edrophonium) and acetylcholine receptor antagonist (atropine) on human esophageal peristalsis in normal subjects. High-frequency intraluminal ultrasound imaging and manometry were performed simultaneously during swallow-induced peristalsis in ten normal subjects. Standardized 5-ml water swallows were recorded 2 cm above the lower esophageal sphincter under three study conditions: control, edrophonium (80 microg/kg iv), and atropine (10 microg/kg iv). A close temporal correlation exists between the peak pressure and peak wall thickness during the control period. The mean time lag between the peak LM and peak CM contraction was 0.03 s. After edrophonium administration, the mean contraction amplitude increased from 101 +/- 9 mmHg to 150 +/- 20 mmHg (P < 0.05) and mean peak muscle thickness increased from 3.0 +/- 0.2 mm to 3.6 +/- 0.3 mm (P < 0.01), and duration of both CM and LM contractions were also increased. Furthermore, the mean time difference between the peak LM and CM was increased to 1.1 s, (ranging 0.2 to 3.4 s) (P < 0.0001). We conclude that cholinomimetic agent induces discoordination between the two muscle layers of the esophagus.
منابع مشابه
Synchrony between circular and longitudinal muscle contractions during peristalsis in normal subjects.
The current understanding is that longitudinal muscle contraction begins before and outlasts circular muscle contraction during esophageal peristalsis in normal subjects. The goal of our study was to reassess the relationship between the contractility of two muscle layers using novel ways to look at the muscle contraction. We studied normal subjects using synchronized high-frequency ultrasound ...
متن کاملCircular and longitudinal muscles shortening indicates sliding patterns during peristalsis and transient lower esophageal sphincter relaxation.
Esophageal axial shortening is caused by longitudinal muscle (LM) contraction, but circular muscle (CM) may also contribute to axial shortening because of its spiral morphology. The goal of our study was to show patterns of contraction of CM and LM layers during peristalsis and transient lower esophageal sphincter (LES) relaxation (TLESR). In rats, esophageal and LES morphology was assessed by ...
متن کاملLongitudinal Muscle Dysfunction in Achalasia Esophagus and Its Relevance
Muscularis propria of the esophagus is organized into circular and longitudinal muscle layers. Goal of this review is to summarize the role of longitudinal muscle in physiology and pathophysiology of esophageal sensory and motor function. Simultaneous manometry and ultrasound imaging that measure circular and longitudinal muscle contraction respectively reveal that during peristalsis 2 layers o...
متن کاملRegulation and dysregulation of esophageal peristalsis by the integrated function of circular and longitudinal muscle layers in health and disease.
Muscularis propria throughout the entire gastrointestinal tract including the esophagus is comprised of circular and longitudinal muscle layers. Based on the studies conducted in the colon and the small intestine, for more than a century, it has been debated whether the two muscle layers contract synchronously or reciprocally during the ascending contraction and descending relaxation of the per...
متن کاملCharacterization of Esophageal Physiology Using Mechanical State Analysis
The esophagus functions to transport swallowed fluids and food from the pharynx to the stomach. The esophageal muscles governing bolus transport comprise circular striated muscle of the proximal esophagus and circular smooth muscle of the distal esophagus. Longitudinal smooth muscle contraction provides a mechanical advantage to bolus transit during circular smooth muscle contraction. Esophagea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 294 3 شماره
صفحات -
تاریخ انتشار 2008